
HW 11 SOLUTIONSProblem 1H&F Chapter 9, Problem 2For our three pendula in a onstant gravitational �eld, arranged linearlyand eah oupled to eah other by springs of spring onstant �, we have theexat Lagrangian (setting m = g = l = 1 and setting the equilibirum lengthsof the springs to 0 as disussed in setion)L = 12 3Xi=1 _�i2 � 3Xi=1(1� os �i)� �2[(�1 � �2)2 + (�2 � �3)2 + (�1 � �3)2℄ (1)whih in the small-angle approximation redues toL = 12 3Xi=1 _�i2 � 12 3Xi=1(1 + 2�) _�i2 + �(�1�2 + �2�3 + �1�3) (2)so we get t = 12I (3)v = 0B� 1 + 2� �� ���� 1 + 2� ���� �� 1 + 2� 1CA (4)so we have (dropping onstant fators in the determinant)jv� !2tj = ������� 1 + 2�� !2 �� ���� 1 + 2�� !2 ���� �� 1 + 2�� !2 ������� (5)= �!6 + 3(1 + 2�)!4 � 3(1 + 3�)(1 + �)!2 + (1 + 3�)2 (6)= (!2 � 1)(�!4 + (2 + 6�)!2 � (1 + 3�)2): (7)We knew to fator out !2 � 1 sine we knew that the mode in whih all thependula swing in phase and with same amplitude has ! = 1. In this modethe springs do not streth at all (hene � is not involved). Anyhow, Setting(7) equal to 0 yields !2 = 1; 1 + 3� (8)1



where the 2nd frequeny is doubly degenerate. The mode assoiated to !2 =1 learly has mode vetor (1; 1; 1). The other modes vetors are orthogonalto this one with respet to t, but sine t is proportional to the identitymatrix this just means orthogonality in the usual sense, and sine the othermode frequeny is doubly degenerate we an hoose any basis we want inthe orthogonal omplement to (1; 1; 1), so we take the following set of modevetors: !2 = 1 (1; 1; 1) (9)!2 = 1 + 3� (1; 0;�1); (1;�2; 1) (10)As for restritions on �, we see that in order for !2 to be real we must have� > �13 (11)but for springs the spring onstant is always positive so this is automatiallysatis�ed.Problem 2H&F Chapter 9 Problem 3Our Lagrangian for the two masses onneted to three springs is (againsetting m=1)L = 12( _x12 + _x22) + k2(x2 � x1)2 + 12(x21 + x22) (12)= 12( _x12 + _x22) + 12[(1 + k)x21 + (1 + k)x22 � 2kx1x2℄ (13)so we have, again dropping onstant fators,jv� !2tj = ����� k + 1� !2 �k�k k + 1� !2 ����� (14)= !4 � 2(k + 1)!2 + 2k + 1 (15)whih has solutions !2 = 1; 2k + 1: (16)2



To get the mode vetors we use Kramer's rule, whih in this ase yields(k + 1� !2; k) so we have !2 = 1 (1; 1) (17)!2 = 2k + 1 (1;�1) (18)Problem 3H&F Chapter 9 Problem 4In this problem we have 3 degrees of freedom, whih we an take to be z,the height of the enter of mass of the plane measured from the equilibriumpoint, and �x; �y, the angles of rotation about the x and y-axes respetively.Another way to see that there are three degrees of freedom is to note that thelength of the 4 springs ertainly determines the on�guration of the system,but this is redundant sine 3 points determine a plane so one one knows thelength of three of the springs the length of the 4th is determined. Now, if wejust have CM motion it's lear that the restoring fore is �4kzẑ, so the CMmode has mode frequeny !m = q4k=M (19)We negleted gravity sine gravity serves only to hange the equilibriumposition of the plate. Now assume the CM is �xed, so then our Lagrangianis, assuming that the plane has dimensions a and b along the x and y axesrespetively,L = 12[Ix _�x2 + Iy _�y2 � (20)2k0� a2 sin �y + b2 sin �x!2 +  a2 sin �y � b2 sin �x!21A℄ (21)� 12 "Mb212 _�x2 + Ma212 _�y2 � k(a2�2y + b2�2x)# (22)where we used the fat that the heights of the various springs in terms of�x; �y are �(a2 sin �y � b2 sin �x). From (22) we see that �x and �y deouple,and we an read o� the mode frequenies from the Lagrangian as!2rot = s12kM (23)3



(If you don't buy it just write down the EOM's from the Lagrangian). Notethat the dimensions of the plate anel out; although the moments of inertiagrow larger as the dimensions do, the displaement of and torque exerted bythe springs also grow, and these e�ets anel eah other out.Problem 4H&F Chapter 9 Problem 12In terms of our original oordinates x1; x2; x3 we have (adjusting x1 andx3 so that l drops out, as in the text)L = m2 ( _x12 + _x22) + M2 _x22 + k2 [(x1 � x2)2 + (x2 � x3)2℄ (24)Now we hange to `relative' oordinatesx1 = y1 + xm (25)x3 = y3 + xm (26)x2 = xm � �(y1 + y3) (27)where � � mM and (27) is derived from (25),(26) and the de�nition of xm.Substituting these new oordinates into (24) yields, eventually,L = 12(2m+M) _xm2 + m2 (1 + �)( _y12 + _y32) +m� _y1 _y3 + (28)k2 [(1 + 2� + 2�2)(y21 + y23) + 4�(1 + �)y1y3℄: (29)Now we ould write down t and v for this Lagrangian and diagonalize, butthis ends up being quite messy, so instead we just note the symmetry in y1and y3 and make the following substitutionp = y1 + y3 (30)q = y1 � y3 (31)in terms of whih y21 + y23 = 12(p2 + q2) (32)y1y3 = 14(p2 � q2) (33)4



so our Lagrangian then beomes (ignoring the xm degree of freedom)L = m(1 + �)4 ( _p2 + _q2) + m�4 ( _p2 � _q2) + (34)k2 [12(1 + 2� + 2�2)(p2 + q2) + �(1 + �)(p2 � q2)℄ (35)= m4 (1 + 2�) _p2 + m4 _q2 + k4 [(1 + 2�)2p2 + q2℄ (37)so we see that p and q deouple and we an just read o� the frequenies.Along with the mode vetors expressed in terms of y1; y3 we have!2p = s km(1 + 2�) (1; 1) (38)!2q = s km (1;�1)Problem 5H&F Chapter 9 Problem 20From the text's eqn (9.125) we have!1 = 2r �md sin �8 (40)!2 = r2 �md (41)!3 = 2r �md sin 3�8 (42)and the orresponding mode vetors are( 1p2 ; 1; 1p2); (1; 0;�1); ( 1p2 ;�1; 1p2) (43)
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